Hydraulicspneumatics Com Sites Hydraulicspneumatics com Files Uploads Custom Inline Archive Www hydraulicspneumatics com Content Site200 Articles 04 01 1997 85180 Waterpower 00000057490

Water-actuated cylinder moves semiconductor wafers precisely

April 1, 1997
Processing equipment used in the fabrication of semiconductor integrated circuits lowers and raises a cassette of silicon wafers into a rinse tank. Each cassette can contain up to 25 wafers etched with patterning for advanced- memory or microprocessor components. A full cassette of wafers can be worth more than $1 million, so smooth, precise, and reliable vertical motion is essential.
Water-powered cylinders stroke 14-lb elevator assembly with cassettes of silicon wafers into deionized-water rinsing bath. Cassettes are tilted 4° to keep wafers registered to left side.

Strasbaugh, San Luis Obispo, Cal., builds processing equipment used in the fabrication of semiconductor integrated circuits. One operation on their Symphony Model chemical/mechanical polisher (CMP) involves lowering a cassette of silicon wafers into a rinse tank, then raising it. This sounds simple enough, but a cassette can contain as many as 25 wafers etched with patterning for advanced- memory or microprocessor components. A full cassette of wafers can be worth more than $1 million, so smooth, precise, and reliable elevator motion is important — for both operating and aesthetic reasons.

Older Strasbaugh machines had used a servo motor and precision ball-screw to raise and lower the cassette in incremental steps. When a new design eliminated the need for steps and called only for top-to-bottom travel, Dave Halley, senior design engineer at Strasbaugh, decided to investigate the use of air cylinders for this movement to reduce the cost.

The cylinders had to stroke 12 in. to immerse the cassette fully in the rinse tank and then to raise it to interface with a handling robot. Because this machine operates in a clean-room environment, no lubricants or particle-generating mechanisms can be present. In addition, the cylinder is exposed to harsh chemicals — for example, polishing slurries are present that can have pHs that range from a very basic 1.5 to a highly acidic 13.

From experience, Halley knew that their inherent stiction would prevent most air cylinders from starting and stroking with the high degree of smoothness required in this application. He also knew that typical elastomeric seals could not meet the cleanliness specifications, nor could other materials used in typical air cylinders survive in the chemical environment. These limitations led him to Airpel pneumatic cylinders, built by Airpot Corp.

Airpel cylinders have no elastomeric seals between the piston and cylinder walls or between the rod and cylinder head. Instead, the Airpel design places a precision carbon/graphite piston inside a Pyrex glass cylinder — with a 0.0005-in. air gap surrounding the piston. The piston floats inside the barrel using air-bearing principles. Instead of a rigid connection between piston and piston rod, a biaxially pivoting arrangement allows the piston to maintain its orientation despite lateral loading. These techniques dramatically reduce both static and dynamic friction, without lubrication. As little as 0.1-psi can initiate movement in unloaded Airpels.

Rated for 100-psi pressures, with an operating temperature range from –65° to 150° C, Airpels are well suited for applications that call for very smooth motion, low speeds, or short strokes, or where only low pressure is available. But they also will produce the same range of motions as conventional small air cylinders. To make the cylinder more rugged, Airpot adds a stainlesssteel, impact-protection sleeve over the glass barrel, with a gap between the two. This protection lets the cylinder withstand impact testing with a 10-lb load and continue to function.

Carbon/graphite piston in Airpel cylinder floats on air, with no elastomer seals; 304 stainless-steel outer tube over Pyrex glass barrel provides impact protection. Modified version for water actuation at Strasbaugh is fitted with stainless-steel cylinder heads and piston/rod coupling also. Click here to see a deomonstration video on this device.

Although Airpel cylinders performed well during Strasbaugh’s initial tests, the elevator assembly did not quite meet the stringent motion requirements. Friction in the linear-guide mechanism and the variation in loads between full and empty cassettes resulted in motion that still was too irregular. Halley decided to see if he could actuate the CMP cylinders with water and capitalize on its incompressibility to achieve the smooth motion he wanted.

On Symphony chemical/mechanical polisher, water-powered cylinders smoothly lower blue cassettes of expensive silicon wafers into deionized-water rinsing bath.

This decision presented another problem. To meet the cleanliness requirements of the CMP machine, pressurized deionized water had to be used to drive the cylinder. And deionized water tends to corrode many materials. In particular, it eats aluminum pretty quickly. To circumvent the corrosive effects of the deionized water, Airpot made some design modifications on the standard Airpel. These amounted to replacing the nickel-plated aluminum piston couplings and cylinder heads with stainless steel components. To test the modified cylinder, Strasbaugh used a 5-lb load and canted it at a 4° angle, adding side loading to exaggerate wear potential. With raise/lower speed set at 1 in./sec, the modified, water-powered Airpel was cycled more than a million times with no degradation in travel rate. (A small amount of deionized water leaked past the gap around the piston and was collected in a drain pan for disposal.) Testing on the actual elevator assembly followed, and the water-actuated cylinder met all design and performance specifications.

Dave Halley, of Strasbaugh, and Mark Gaberman, president, Airpot Corp., Norwalk, Conn., described this application.

About the Author

Richard Schneider | Contributing Editor

Contributing Editor, has been affiliated with Hydraulics & Pneumatics for more than 30 years and served as chief editor from 1987 through 2000. He received a BSME from Cornell University and also completed additional courses at the Milwaukee School of Engineering. His diverse background in industry includes ten years with a fluid power distributor and a variety of other professional positions. He has also been active with the National Fluid Power Association and Fluid Power Society.

Continue Reading

Motor leakage variations

Oct. 18, 2006
affect low-speed performance

The Impacts of Electrification on Fluid Power Systems

May 15, 2023
Electrification presents challenges as well as opportunities to re-evaluate and improve upon the design of hydraulics and pneumatics.

Sponsored Recommendations

All-In-One DC-UPS Power Solutions

March 13, 2024
Introducing the All-In-One DC-UPS, a versatile solution combining multiple functionalities in a single device. Serving as a power supply, battery charger, battery care module,...

Motor Disconnect Switches

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...

Industrial Straight-Through Cable Gland

March 13, 2024
Learn more about Altech's cable glands and all they have to offer for your needs!

7 Key Considerations for Selecting a Medical Pump

Feb. 6, 2024
Newcomers to medical device design may think pressure and flow rate are sufficient parameters whenselecting a pump. While this may be true in some industrial applications, medical...